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FIG. 19. Hugoniot curve with region of instability between A 
and C: (a) P-V plane, (b) P-u plane. Point A is entropy 
maximum along H; B is entropy minimum. 

sure of the first wave is stationary at state A with re
spect to higher shock pressures, (less than C). 

Now, consider a situation where the upper limit of 
Ineq. (19) is exceeded, as illustrated in Fig. 21. In 
this case a plot of E' as function of P has the appear
ance shown in Fig. 22. The region between A and B is 
thermodynamically unstable according to Ineq. (19). 
Consequently, a shock to state B tends to be stabilized 
in pressure with respect to lower shock pressures. 
This is just the situation required for detonation, and 
we put forward the hypothesis that detonation is indeed 
the result of a minimum in E' along the Hugoniot curve. 

We note that this criterion for detonation is quite dif
ferent from the Chapman-Jouguet Theory. In that the
ory detonation corresponds to a local minimum in the 
entropy along the equilibrium Hugoniot curve. More
over, it requires the assumption of two effective equa
tions of state, applicable in different regions of the 
shock transition, a frozen equation of state for the ini
tial shock transition and a relaxed equation of state for 
the equilibrium state finally achieved (Ref. 10, p. 480). 

s 

P 
FIG. 20. Entropy as function of pressure along Hugoniot curve 
of Fig. 19. Cross-hatched region is region of instability. 
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FIG. 21. Hugoniot curve with unstable region 1 < j 2 (1.V / tiP) H, 

between A and B: (a) P-V plane, (b) P-u plane. Point A is 
relative maximum in E' along H; B is relative minimum. 

In summary then, stable shocks are characterized by 
monotonically increasing entropy and reduced internal 
energy along the Hugoniot curve, and unstable shocks 
are associated with either a local maximum in the de
rivative (dS/dP)H' or with a local minimum in the de
rivative (dE' /dP)H' In the former case, a two-shock 
configuration results in which the pressure of the first 
wave is stationary at the entropy maximum. The latter 
case corresponds to detonation with the pressure sta
tionary at the minimum in E'. 

The unstable regions are shown as the cross-hatched 
areas of Figs. 20 and 22. The upper bound of the un
stable region of Fig. 20 is determined by the equiva
lence of the shock velocity there with that at the en
tropy maximum. The region CA of Fig. 22 is metasta
ble; shock waves in this range require adequate pertur-

E' 

D 

8 

P 

FIG. 22. Plot of E' as function of P along Hugo niot c urve of 
Fig. 21. Cross-hatched region is thermodynamically unstable. 
Point B is detonation state. 
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bation to overcome the energy barrier. Just as a liquid 
can be cooled below the stable transition temperature, 
the existence of a minimum in E' does not guarantee 
that a detonation will form; however, state B is the 
thermodynamically more stable state. It may be for 
this reason that detonations are observed to propagate 
more readily in materials that are initially somewhat 
porous and why turbulence is commonly observed behind 
detonations. There is an obvious analogy to the onset 
of turbulence in viscous, steady, subsonic flow. 

VI. CONCLUSIONS 

We have treated the problem of stability of plane 
shock waves by considering the reflection of small am
plitude acoustic waves from the shock front, and by ir
reversible thermodynamics. Both approaches yield the 
same criteria for stability, which can be stated as a re
striction on the relative slopes of the Hugoniot curve 
and the Rayleigh line 

-1 ~ l(dV/dP)H ~ 1 . 

Violation of the lower limit leads to a two-shock struc
ture; violation of the upper limit to detonation. 

The thermodynamic treatment requires the recogni
tion that, at least in an adiabatic mechanical process, 
the entropy production is bounded above as well as be
low. This can be stated alternatively by the relations, 
applicable to real processes, 

o ~ TdS ~ (p - po) dV, (T > 0) 

or by the equivalent relations, 

o ~ dS; dE' ~ 0 , 

where dE' =dE +PodV, is the reduced internal energy. 

For shock waves E' is also equal to the kinetic ener
gy density of the shocked state in a coordinate system 
in which the initial state is stationary; conversely it is 
the kinetic energy density of the initial state in a coord
inate system in which the shocked state is stationary. 

Shocks are thermodynamically unstable whenever 
there is a local maximum in the entropy or a local min
imum in the reduced internal energy along the Hugoniot 
curve. These correspond to a local maximum in the 
shock velocity and to a local minimum in the particle 
velocity, respectively. In the former case a two-shock 
structure develops in which the pressure of the first 
shock corresponds to the entropy maximum. The latter 
case gives rise to turbulence that tends to stabilize the 
shock pressure at the minimum in the reduced internal 
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energy. We posit that detonations are instabilities of 
this type. 

Because E' is also the kinetic energy density, there 
is another sense in which the stability criteria can be 
understood. Thus, in a coordinate system fixed in the 
shocked material the shock front tends to produce max
imum entropy with minimum expenditure of the kinetic 
energy of the incoming material. Instability occurs 
when there are neighboring Hugoniot states that permit 
greater production at less cost. It is tempting to specu
late that simUar thermodynamic conditions may also be 
valid for biological systems. 

We note that the results are in satisfying agreement 
with a generalized form of the Le Chatelier principle. 
Thus, for stable shocks both the shock velOCity and the 
particle velocity increase monotonically with pressure. 
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